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Abstract

The ocean’s role in modulating the observed 1–7 Pg C yr−1 inter-annual variability in
atmospheric CO2 growth rate is an important, but poorly constrained process due to
sparse spatio-temporal ocean carbon measurements. Here, we investigate and de-
velop a non-linear empirical approach to predict inorganic CO2 concentrations (to-5

tal carbon dioxide (CT) and total alkalinity (AT) in the global ocean mixed-layer from
hydrographic properties (temperature, salinity, dissolved oxygen and nutrients). The
benefit of this approach is that once the empirical relationship is established, it can
be applied to hydrographic datasets that have better spatio-temporal coverage, and
therefore provide an additional constraint to diagnose ocean carbon dynamics glob-10

ally. Previous empirical approaches have employed multiple linear regressions (MLR),
and relied on ad-hoc geographic and temporal partitioning of carbon data to constrain
complex global carbon dynamics in the mixed-layer. Synthesising a new global CT/AT
carbon bottle dataset consisting of ∼33 000 measurements in the open ocean mixed-
layer, we develop a neural network based approach to better constrain the non-linear15

carbon system. The approach classifies features in the global biogeochemical dataset
based on their similarity and homogeneity in a self-organizing map (SOM; Kohonen,
1988). After the initial SOM analysis, which includes geographic constraints, we apply
a local linear optimizer to the neural network which considerably enhances the predic-
tive skill of the new approach. We call this new approach SOMLO, or self-organizing20

multiple linear output. Using independent bottle carbon data, we compare a traditional
MLR analysis to our SOMLO approach to capture the spatial CT and AT distributions.
We find the SOMLO approach improves predictive skill globally by 19 % for CT, with a
global capacity to predict CT to within 10.9 µmol kg−1 (9.2 µmol kg−1 for AT). The non-
linear SOMLO approach is particularly powerful in complex, but important regions like25

the Southern Ocean, North Atlantic and equatorial Pacific where residual standard er-
rors were reduced between 25–40 % over traditional linear methods. We further test the
SOMLO technique using the Bermuda Atlantic time-series (BATS) and Hawaiian ocean
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time-series (HOT) datasets, where hydrographic data was capable of explaining 90 %
of the seasonal cycle and inter-annual variability at those multi-decadal time-series
stations.

1 Introduction

The oceans role in modulating rising atmospheric carbon dioxide (CO2) levels has5

been found to be very important (Khatiwala et al., 2012; Sabine et al., 2004). A variety
of data-based estimates suggest net oceanic uptake for CO2 to be 2.1±1.0 Pg C yr−1

(1 Pg=1015 g) since the year 2000, or about 25–30 % of anthropogenic CO2 emis-
sions over that period (Jacobson et al., 2007; Khatiwala et al., 2009; Manning and
Keeling, 2006; McNeil et al., 2003; Mikaloff Fletcher et al., 2006; Takahashi et al.,10

2009). Between 1990 and 2009, atmospheric CO2 accumulation rates vary between 1–
7 Pg C yr−1, indicating large inter-annual variability from both the terrestrial and oceanic
reservoirs (Sarmiento et al., 2010). Although our long-term, decadal-scale understand-
ing of oceanic CO2 uptake has advanced, our shorter-term understanding (seasonal to
inter-annual) of ocean carbon dynamics remains poorly constrained due to data limita-15

tions.
Atmospheric CO2 observations, inversion techniques and ocean models suggest a

large range for inter-annual variability in oceanic CO2 uptake (0.1–1.5 Pg C yr−1) (Ben-
der et al., 2005; Le Quéré et al., 2003; Patra et al., 2006; Rayner et al., 2008). How-
ever, from an oceanic perspective, our understanding of natural variability of ocean20

carbon has come about sporadically, dominated by regional time-series measurement
programs (e.g. Bermuda Atlantic time-series (BATS) and Hawaiian Ocean time-series
(HOT)). Without a better understanding of shorter-scale natural variability, the ability
to constrain and understand the time-evolving capacity for the ocean to absorb at-
mospheric CO2 in a high-CO2 world will be limited, particularly since some evidence25

suggests the ability for the ocean to absorb CO2 has slowed since the late 1980’s as
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a consequence of decadal-scale trends in winds and oceanic circulation (Le Quéré et
al., 2010; Sarmiento et al., 2010).

Standard hydrographic measurements in the ocean (temperature, salinity, dissolved
oxygen and nutrients) are sampled and analysed much more frequently than inor-
ganic carbon. With the deployment of satellites, gliders and ARGO floats providing5

an immense capacity for capturing short-term seasonal to inter-annual variability in the
oceans, the question is, can this new information be used to help infer and diagnose
short-term carbon dynamics in the ocean?

The oceans inorganic carbon system can be fully constrained by knowing any
two measurements within its inorganic carbon constituents; partial pressure of CO210

(pCO2), total dissolved carbon dioxide (CT), total alkalinity (AT) or pH. National and in-
ternational efforts to survey the global oceanic CT and AT distribution has amounted to
approximately 330 000 bottle measurements taken sporadically over the past 30 years.
However, our ability to globally understand natural seasonal CT and AT dynamics has
been hindered due to the large spatio-temporal limitations of this accumulated dataset15

(Key et al., 2004).
Autonomous pCO2 measuring devices mounted mainly onto commercial shipping

vessels has resulted in a global network of approximately 6.4 million ocean surface
pCO2 measurements (Takahashi et al., 2012). This pCO2 dataset has given us the
best idea of seasonal (Takahashi et al., 2009) (herein after referred to as T-09) to20

inter-annual (McKinley et al., 2011; Park et al., 2010; Telszewski et al., 2009) CO2 vari-
ability within the ocean. However, the global pCO2 dataset cannot inform us on some
very important processes and biogeochemical dynamics that modulate atmospheric
CO2. The oceans biological carbon export flux has been estimated to be between 11–
16 Pg C yr−1 from satellite chlorophyll a measurements (Falkowski et al., 2000), some25

5–8 times the net oceanic CO2 absorption from the atmosphere. Small changes in the
biological carbon flux have large and important implications for atmospheric CO2. How-
ever, this large signal is yet to be constrained from inorganic carbon data itself, since
it requires constraints on mixed-layer carbon dynamics rather than just sea-surface
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constraints like the pCO2 climatology. Secondly, without equivalent AT or CT measure-
ments, pCO2 by itself cannot provide insights into partitioning the biological carbon
pump into both organic and calcification components, particularly important with re-
gard to future ocean acidification impacts. Previous estimates on this “rain ratio” (or-
ganic/calcifier export flux) have needed to assume a constant redfield ratio on nutrient5

changes in the oceans mixed-layer (Sarmiento et al., 2002). Finally, spatio-temporal
deficiencies of the pCO2 dataset in regions like the Southern Ocean, introduces un-
certainties in the direct evaluation of short-term variability. To understand seasonal
to inter-annual variability in these regions requires methods that have better spatio-
temporal coverage than is constrained by historical pCO2 sampling. Here, we seek to10

diagnose seasonal to inter-annual CT and AT concentrations in the mixed-layer that
provides independent, but important additional constraints to the global sea-surface
pCO2 climatology.

To varying degrees, concentrations of CT and AT are influenced by the solubility of
CO2, biological processes, vertical and lateral water transport and direct CO2 exchange15

with the atmosphere (Sarmiento and Gruber, 2006). Ocean mixing is largely controlled
by density dynamics via temperature (T) and salinity (S) variations in the ocean, which
also regulate the solubility of CO2 (Weiss, 1974). Information on nitrate (N), silicate (Si),
phosphate (P) and dissolved oxygen (DO) variations provide insight into the biological
influences on oceanic inorganic carbon (Anderson and Sarmiento, 1994). From this, it20

should be implicit that we can derive empirical relationships between these standard
hydrographical parameters and the carbon constituents. If a robust empirical relation-
ship is established, the order of magnitude more in-situ measurements of these stan-
dard hydrographic parameters (Boyer et al., 2009) would give us new constraints on
seasonal to inter-annual global carbon dynamics in the mixed-layer.25

The use of the global sea-surface pCO2 dataset would be ideal to develop such
empirical algorithms. However, these continuous pCO2 measurements generally have
no coinciding biogeochemical information (i.e. DO or nutrients) that could help establish
an empirical relationship. Some have used satellite Chlorophyll a measurements to
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help constrain ocean surface pCO2 with varying degrees of success (Chen et al., 2011;
Chierici et al., 2009; Telszewski et al., 2009). The benefits of using ship-based bottle
measurements of CT and AT, is that they are almost always complemented by a suite
of hydrographic and biogeochemical parameters (T, S, DO and nutrients) that can be
used to help derive empirical relationships.5

Wallace (1995) verified a multiple linear regression (MLR) concept by successfully
capturing CT using T, S, Si and apparent oxygen utilization (AOU) in the North Atlantic.
Several studies have since investigated this MLR approach in capturing the surface
distribution of CT and AT (see Table 1).

Divergent biological and mixing regimes throughout the ocean have made it difficult10

to use linear empirical techniques on a global scale. Researchers have traditionally par-
titioned the global bottle dataset geographically, hydrographically and temporally in an
attempt to improve the ability of linear approaches to model the non-linear relationship
between inorganic carbon and the standard hydrographic parameters. Here we use
a non-linear empirical modelling approach to avoid this ad-hoc partitioning and show15

that it delivers considerable improvements in predictability. We use a self-organizing
map (SOM; Kohonen, 1988) to classify or cluster measurements of hydrographic pa-
rameters into groups and then establish the relationship between these parameters
and CT/AT separately for each group. SOMs have already been found to be well suited
in extracting features of the ocean surface pCO2 dataset in the North Atlantic using20

a combination of modelled and remotely sensed parameters to constrain the system,
(Friedrich and Oschlies, 2009a, b; Lefèvre et al., 2005; Telszewski et al., 2009).

To contextualise this work, we firstly explore the use of the traditional MLR approach
to diagnose global seasonal carbon dynamics in the ocean. To do this, we employ the
MLR approach on a newly synthesised CT/AT bottle dataset of ∼33 000 mixed-layer25

samples. Next, we present our SOM-based approach to diagnose seasonal carbon
dynamics on a global scale, which better accounts for non-linearities that would limit
the ability of the MLR approach. To compare the MLR and our SOM approach, we
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develop a global, independent test to assess the models skill. Finally, we use the BATS
and HOT in-situ time-series as an explicit test for our new approach.

2 Global carbon measurements and training dataset

The extraordinary effort to collate and synthesis the bottle hydrographic and biogeo-
chemical data has been conducted by several groups; including GLODAP (Global5

Ocean Data Anlysis Project) (Key et al., 2004), CARINA (CARbon dioxide IN the At-
lantic Ocean) (CARINA Group, 2009b, a, 2010) and PACIFICA (PACific ocean Interior
CArbon) (http://pacifica.pices.jp/).

Precision in measuring bottle CT and AT samples has consistently improved over the
past 30 yr as a result of advances in techniques and apparatus (Bradshaw et al., 1981;10

Johnson et al., 1987). However, it was not until the introduction of standard operating
procedures and certified reference materials (Department of Energy, 1994; Dickson,
2003, 2007) that the quality consistency of independent laboratory measurements was
achieved and is currently estimated to be ±2 µmol kg−1 (Dickson et al., 2007). To ac-
count for any systematic measurement biases between cruises, a secondary Quality15

Control (QC) method was incorporated by the project groups to identify and smooth out
any inconsistencies, as outlined in (Tanhua et al., 2010). The internal consistency of
the CARINA CT/AT dataset has been estimated to ±2.5 µmol kg−1 (Tanhua et al., 2010).
More recent additional measurements we included in the global dataset underwent a
1st QC check to remove measurements flagged as bad or questionable.20

For this work, 470 cruises from GLODAP, PACIFICA, CARINA, CLIVAR and miscella-
neous sources were merged with the BATS and HOT measurements to form the global
carbon training dataset, as shown in Table 2. We refined the global data to be within
the mixed-layer (Supplement A), non-coastal (Supplement B) and data post 1980 due
to large uncertainties in early measuring techniques. The final number of usable CT/AT25

discrete measurements in the global mixed-layer was ∼33 000.
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Whilst the spatial coverage of the refined data is consistent over all major ocean
basins (Fig. 1a), there are approximately 45 % less wintertime measurements than
summer (Fig. 1b) which we examine as a potential cause for bias when applying our
approach.

2.1 Normalization of CT measurements5

Global atmospheric CO2 concentrations during the 1980’s, 1990’s and 2000’s have
increased at 1.60±0.56, 1.47±0.66 and 1.90±0.38 ppm per-year, respectively (Thomas
Conway and Pieter Tans, NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends). Mixed-
layer measurements of CT were corrected for temporal anthropogenic CO2 uptake to
the reference year 2000 by calculating the change in mixed-layer CT in equilibrium with10

the atmospheric CO2 increase using observed Revelle factors (Supplement C). This
approach is somewhat equivalent to that of T-09 where all pCO2 measurements values
were corrected to the year 2000 using a rate of 1.5 µatm yr−1.

There are regions of the ocean where upwelling and sea-ice inhibit air-sea gas ex-
change, resulting in considerable CO2 disequilibrium (e.g. Southern Ocean, equatorial15

Pacific). The anthropogenic CO2 correction technique used here, like those for T-09 and
(Lee et al., 2000), will be biased in these regions. However, by performing a test using
no anthropogenic CO2 correction (Supplement D), we demonstrate the very low impact
this anthropogenic correction has to our final result. This is in part due to the large nat-
ural fingerprint of CT (±50 µmol kg−1) relative to the small changes (∼1 µmol kg−1 yr−1)20

resulting from anthropogenic CO2 uptake.

3 Testing algorithm skill: a Global Independent Test (GIT) approach

Most empirical studies report statistical errors calculated as the residual standard
error (RSE) from linear regressions. For example, CT in the Indian Ocean was re-
ported to be predicted to within ±5 µmol kg−1 using a suite of hydrographic parameters25
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(Bates et al., 2006), ±8 µmol kg−1 for the Southern Ocean (McNeil et al., 2007) and
±7 µmol kg−1 for a global dataset (Lee et al., 2000). However, an independent dataset
not used in the regressions is needed to accurately report true statistical uncertainty
for any empirical approach.

Here, we developed a “Global Independent Test” (GIT) approach in order to com-5

pare the MLR and NN empirical approaches consistently. The GIT method evaluates
the algorithms skill through an independent test of each cruise or time-series without
using it in the training or regression dataset. This implies that for a training data pool
consisting of n cruises and i time series, n+ i unique algorithms with identical model
configurations are used to predict the excluded cruise or time series measurements.10

Calculating the residual standard error (RSE; Eq. 1) of the independent predictions
(yindp) then provides a better and accurate estimate of the algorithms skill.

RSE=

√√√√∑(ypred−yin-situ
)2

N−2
(1)

The reason we independently test each individual cruise dataset rather than a randomly
selected subset of the data, is due to similar concentrations of carbon and auxiliary15

measurements within adjacent casts of the same cruise. As there are typically two to
three measurements within each cast of the training dataset, the independent predic-
tion of one of these measurements will give a misleading representation of the models
true skill, as the remaining two measurements with a very similar “biogeochemical fin-
gerprint” will be used to train the algorithm. The prediction of an entire independent20

cruise is a more robust measure of the algorithms skill.
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4 Traditional MLR approach

4.1 Method description

Multi-linear regression is a numerical estimation of the linear relationship between a
set of predictor variables, x= (x1...xn...xN ), and response variable, y ,

y = β0 +
N∑

n=1

βnxn (2)5

Where β0 and βn represent the intercept and empirically derived coefficients, respec-
tively. Multi-collinearity between predictor variables (MCL) and the distribution and con-
stant variance of the residual errors are both issues that may affect the predictive and
diagnostic ability of a MLR. To minimise the effect of these issues, the empirical rela-
tionships between CT/AT and the standard hydrographic parameters were constrained10

using a forward stepwise robust MLR routine (Supplement E). In brief, the routine con-
strains the optimal model configuration through the incorporation of statistical tests to
evaluate parameter significance and the necessity of interaction terms to reduce the
effects of MCL. This MLR normalization routine is well suited for optimizing the model
and dampening the influence of outliers that cannot be reasonably identified as bad15

measurements. This aspect is particularly important when the global dataset is subject
to ad-hoc geographical and/or temporal separation methods, where measurements not
consistent with the bulk biogeochemical dynamics within a region have the potential to
affect the model.

4.2 Ad-hoc vs. universal MLR20

To investigate the application of the traditional MLR method, we compared the skill
of using one single regression globally (universal MLR) to an ad-hoc approach that
partitions the dataset into regions (ad-hoc MLR). We based the ad-hoc approach on
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dividing the global carbon dataset on the geographical and temporal guidelines outlined
by Lee et al. (2000, 2006) and Bates et al. (2006). In this way, the global dataset
was subset into 5 geographic regions to constrain the AT system, and 11 geographic
regions, 8 of which were subjected to further separation into summer and winter months
to constrain CT, (see Fig. 2). The universal method simply uses the entire global dataset5

without division.

4.3 MLR results

When universally applying the traditional MLR on the ∼33 000 global mixed-layer CT

measurements, the statistical regression RSE is 15.1 µmol kg−1 when using T, S, DO,
P, N and Si as predictors (Table 3). If applying the ad-hoc geographical and temporal10

separations, the statistical regression RSE reduces to 13.2 µmol kg−1. However, when
the independent test (GIT) is used to evaluate the regressions, errors increase to be
16 µmol kg−1 for the ad-hoc approach and 15.6 µmol kg−1 for the global regression.
For AT, optimal predictors were found to be T, S, S2, DO, P and Si, while a global
MLR algorithm captured the signal to within 11 µmol kg−1 using the GIT. All empirical15

relationships for the global and ad-hoc MLR models can be found in Supplement G.
The MLR approach and results gives us a framework to attempt to develop a better

method that captures any potential non-linear biases that are contributing to errors of
CT ±16 µmol kg−1 and AT ±11 µmol kg−1 on a global scale.

5 Neural network approach20

5.1 Overview of the neural network approach

A self-organizing map (SOM) is an algorithm that uses an iterative approach to clas-
sify multi-dimensional data into discrete groups, or neurons, usually arranged in a 2-
dimensional grid. Using an algorithm that employs discrete clustering is appealing, as
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it removes the need for the type of ad-hoc partitioning we discussed in Sect. 4.2. This
has led to application of SOMs in a wide range of disciplines (Abramowitz, 2005; Hsu
et al., 2002; Pöllä et al., 2009).

Figure 3 illustrates the routine of SOM training and prediction. For a training dataset
of P samples consisting of predictor variables x and response variable y , the SOM5

clustering process allocates each sample to one of J neurons (sometimes also called
clusters, nodes or groups). The neurons are typically arranged in a 2 dimensional A×B
matrix so that we represent a node as ja,b. The clustering algorithm aims to ensure that
nodes that are nearby in this matrix contain samples that have similar values of the pre-
dictor variables x. The y = f (x) input-output mapping is then completed by performing10

a linear regression between x and y separately for each neuron.
These SOM and regression parameters can then be used to make predictions of

y for an independent set of Q predictor samples (x1, ...,xq, ...,xQ). First, each xq is
allocated to a SOM neuron, based on its similarity to the SOM weights from the training
dataset. This is the “winning neuron” for a particular sample j (xq). Then the regression15

parameters for j (xq) are used to predict yq.
Here we explore two variants to this approach. The first, as described above, uses

a multiple linear regression at each neuron, which we describe here as self-organizing
multiple linear output (SOMLO). The second takes the mean of all response values
belonging to a node, which we’ll call self-organizing map mean (SOMM). We now de-20

scribe both in more detail.

5.2 Initialization of the model constraints

For our implementation, the input-output pairs (xp,yp), 1 ≤ p ≤ P in the training dataset
are some subset of x= (T, S, DO, N, Si, P), and y =CT or AT. To ensure each predictor
variable has an equal opportunity to define the features of the SOM map during the25

training routine, we zero-mean and scale the variables by their standard deviation so
that their distribution and range is similar. For nitrate, phosphate and silicate, due to the
exponential distribution of their measurements, we first log10 scale their measurements.
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The J neuron SOM we use here is structured in a hexagonal topology for the current
study (Fig. 3). Careful consideration needs to be exercised when defining the size of
the SOM map, as too few neurons will not capture all important features, and too many
will over-fit the training dataset. Each neuron (ja,b) is then assigned an initial weighting
vector (ω) of length equal to the number of input variables (maximum 6), and whose5

values are randomly selected from the input variable range.

5.3 SOM training routine

Once all the neuron weights have been initialized, training is an iterative process de-
signed to cluster the P samples into J neurons. For each iteration step of the model (τ),
the input data samples are individually presented to the SOM map in a random order10

and the neuron whose weights are closest to the current input sample is declared the
“winning neuron” for that sample, using

distance(xp,ωj ) =

[
N∑

n=1

(
xp,n −ωj ,n

)2]0.5

(3)

That is, the “winning neuron”, j (xp), for sample xp is simply the neuron that minimizes
this distance. Once the winning neuron is established, the weights of the winning neu-15

ron, as well as those neurons in its topological neighbourhood in the SOM are then
adjusted towards the value of the current sample value (xp) via

ωj (τ +1) =ωj (τ)+hj ,j(xp)
(
xp −ωj (τ)

)
(4)

In this expression, hj ,j(xp) determines the extent to which a node’s weight is brought
closer to the current sample value (termed a “learning rate”, h ≤ 1). It also determines20

the size of the neighbourhood around the winning node that receives a significant ad-
justment. We use

hj ,j(xp) = η (τ)exp

(
−
dj ,j(xp)

2σ2 (τ)

)
(5)
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where, dj ,j (xp) represents the discrete distance in the SOM map topology between the

winning neuron j (xp) and an arbitrary neuron j , and σ2(τ) and η(τ) are the neighbour-
hood width and learning rate, respectively. As the model progresses through iterations,
σ2(τ) ensures that the neighbourhood width shrinks from a value that significantly
adjusts most of the neurons to finish with only adjusting the winning neuron. Similarly,5

the learning rate η(τ) decreases with iteration, so that regional features of the SOM
map gradually develop as iterations continue.

The form of the model used here is known as a supervised SOM, whereby dis-
tributional information of the response parameter (CT or AT) is used as an additional10

constraint beyond the hydrographic information (T, S, DO etc.) in clustering the global
dataset into the set of J neurons. For more detail see Supplement H.

5.4 Completing the input-output mapping

We complete the y = f (x) in one of two ways. First, the mean of all output values yp for
samples belonging to a node is used – the SOMM. Alternatively, we use MLRs with the15

training data assigned to the winning neuron to establish this relationship (see Fig. 3).
Here we use MLRs after the SOM training through the application of a principal compo-
nent regression (PCR) and a forward stepwise robust MLR based on hypothesis tests
(see Supplement E and F for details). To ensure confidence in regression coefficients,
a minimum threshold value of 10 times the number of predictor parameters was im-20

plemented. If the number of data points assigned to the winning neuron is below this
threshold value, data from the second most similar neuron is merged with the winner,
and then third, until the data pool reaches the threshold limit.

5.5 Predicting with the SOMLO/SOMM system

For any independent input data vector (xq), we can predict the output value (yq) using25

the SOM map trained above via a two-step process. First, determine which neuron
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in the SOM map each new data sample is closest to using the distance measure in
Sect. 5.3 (Eq. 3). Then the output value (of CT or AT) is determined using either the
mean value of the winning neuron’s training output values (using the SOMM) or the
regression parameters established with training data.

6 Application to the global ocean5

6.1 Optimization of the global model

To converge on the optimal SOMLO approach for the ocean carbon mixed-layer
dataset, we employed a two phase process. Firstly, three unique subsets of ocean
carbon data were extracted to ascertain which hydrographic parameter combination
worked best. In the second phase we applied the global independent test (GIT) tech-10

nique to make an out-of-sample assessment of the global skill of the model.

6.1.1 Defining optimal predictor parameters

Correlations between hydrographic parameters may lead to redundancy in the infor-
mation predictor variables provide. To investigate the importance of each variable in
informing the SOM or constraining the MLR, we perform tests that exclude the vari-15

ables one at a time (Fig. 5). These test the ability of the models to capture three unique
independent datasets that each represent about 10 % of the global carbon dataset (Ta-
ble 4). As an example, Fig. 4 presents the spatial distribution of the T1 independent
dataset, constituting 11.4 % of the global training dataset.

To explore the optimal SOM configuration, 800 iteration steps were used to train the20

SOM, using neuron map sizes ranging from 9 to 529 for every different input variable
combination, with the ultimate aim to converge on the model with the lowest RSE.

Salinity was found to be the most important parameter for capturing the mixed-layer
carbon signal, followed by temperature then nutrients (Fig. 5). The final optimal param-
eter set and SOM neuron size using the three independent tests were (SOPSi, 25) and25

15343

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/15329/2012/bgd-9-15329-2012-print.pdf
http://www.biogeosciences-discuss.net/9/15329/2012/bgd-9-15329-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 15329–15380, 2012

Diagnosing seasonal
to inter-annual

surface ocean carbon
dynamics

T. P. Sasse et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(TSPO, 56) for the global AT and CT models, respectively (Fig. 6). For CT the SOMLO
model incorporating PCR constrained the system with a higher skill than the robust
MLR, whilst AT was better constrained using the robust MLR model.

The addition of phosphate beyond temperature, salinity and dissolved oxygen im-
proves the prediction of CT by ∼27 % or 5.1 µmol kg−1 (Fig. 6). Without air-sea gas5

exchange modulating its behaviour, phosphate likely provides clearer constraints on or-
ganic matter production and respiration than dissolved oxygen alone. The redundancy
of nitrate for both CT and AT (Fig. 6) is likely due to the near constant stoichiometric
uptake rate of phosphate and nitrate by photosynthesising organisms. The preference
of phosphate over nitrate may be a result of the continual production of organic matter10

by nitrogen-fixers after the nitrate pool is completely depleted (Gruber and Sarmiento,
1997). Furthermore, the re-naming of samples where only “nitrate+nitrite” was listed
to nitrate in the GLODAP and CARINA products, (Key et al., 2004), may serve to intro-
duce additional biases in using nitrate.

Precipitation and dissolution of calcium carbonates (CaCO3) affects the concentra-15

tion of AT twice as much as CT (Sarmiento and Gruber, 2006). As waters high in silicate
tend to relate to high biological respiration by diatoms (a non calcifying organism), and
waters of low silicate foster a more conducive environment for calcifying organisms
(such as coccolithophores) (Kirchman, 2012), silicate helps constrain the spatial pat-
terns of CaCO3 cycling which influences AT.20

Salinities significant importance in constraining the AT system is likely due to the
known high correlation between these two parameters (Millero et al., 1998), whereas
the addition of temperature to the parameter set is redundant, as pointed out by some
earlier studies (e.g. McNeil et al., 2007).

6.1.2 Importance of geography in the model25

Carbon data from geographically diverse ocean regions will be clustered into the same
neuron when input-output concentrations are similar. For example, a cluster of sim-
ilar biogeochemical data in the North Atlantic Ocean can be equally represented
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by those in some parts of the North Pacific Ocean, despite there being little ocean
inter-connectedness between these two carbon datasets on shorter time-scales. Spa-
tial length-scales of variability are known to be within ocean basins, not between them,
especially those constrained by land. Without applying geographical boundary condi-
tions, non-linearities may be introduced into the final MLR which would limit the models5

predictive skill.
To test this hypothesis, optimal model configurations were trained with the inclusion

of geographical input parameters in the training of the SOM (Supplement I), but were
excluded as predictor parameters in the linear regressions. We found that introducing
geographical information to be a powerful addition in improving the skill of the method10

for CT by 16 % or 2.2 µmol kg−1, however there was little improvement for AT (Fig. 7).
The optimal SOMLO configuration additionally incorporates longitude and n-vector ge-
ographical inputs in constraining AT and CT, respectively.

To better understand and visualize why geography is important, we compare the spa-
tial distribution of neurons for CT models trained with only biogeochemical information,15

and both biogeochemical and geographical information (Fig. 8a–b). To illustrate the
spatial distribution of the assigned neurons for the global carbon dataset, we plot the
neurons using different colours. Here, each colour represents a neuron, while shades
of colours indicate close similarity in the weighting vectors. The broad regions of simi-
larity that are captured when the SOM is constrained only by biogeochemical proper-20

ties include the Southern Ocean, sub-tropical gyres, North Pacific and North Atlantic
(Fig. 8a). However, these ocean “fingerprints” extend beyond the known spatial length
scales, for example linking features in the Southern Ocean to that of the North Atlantic,
while zonal bands stretch across ocean basins (Fig. 8a). When biogeochemical and
geographical information are incorporated into the SOM training routine, the resulting25

distribution preserves the neuron boundaries at known frontal zones such as the sub-
tropical convergence zone, but is able to constrain the classification of data to be within
each ocean basin (Fig. 8b). Using geography is an important additional constraint that
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implicitly shortens the length scales of variability which dominate seasonal mixed-layer
dynamics in the ocean.

It is important to note that the addition of geography did not alter the optimal param-
eter set for the technique.

6.1.3 SOMM/SOMLO comparison5

Optimal model configurations were tested with neuron sizes extending up to 2500 to
explore the ability of the SOMM model in constraining the three independent datasets
(Fig. 9). Using all data the SOMM model converged on an RSE value of 16 µmol kg−1

in constraining CT. Although the SOMM is powerful in constraining complex non-linear
datasets, the relatively sparse carbon dataset limits the ability of the mean-mode of the10

SOM to predict CT on a global scale.
We found using a local multiple-linear optimizer (i.e. the MLR) in addition to the

global SOM optimizer to significantly improve the models ability to constrain global CT

by ∼27 % or 4.4 µmol kg−1. Similar findings are found for the AT model.

6.2 Measuring the improvement over traditional MLR15

To evaluate the skill of the two independent approaches used here (MLR versus
SOMLO), we tabulated the results of each technique based on the global indepen-
dent test (GIT) divided into 5 geographical regions and evaluated globally (Table 5).
The SOMLO approach improves the predictive skill of CT by between 11–30 % for all 5
regions (Table 5). In particular, known complex dynamical regions with global CO2 im-20

portance like the equatorial Pacific, Southern Ocean and North Atlantic are where the
non-linear SOMLO approach excelled, improving the prediction of CT by between 23–
30 % (or 4–6 µmol kg−1). From a global point of view, SOMLO improves the predictive
skill of CT in the mixed-layer by ∼19 %.

For AT, the SOMLO improves the detection only marginally by about 7–10 % (or 0.7–25

1.4 µmol kg−1). This is most likely a result of the carbonate system being less prone to
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non-linearities and complexity, thereby limiting the benefits of SOMLO, since it better
constrains more complex non-linear systems.

6.3 SOMLO regional error assessment

To further scrutinise the spatial skill of the SOMLO model, absolute values of the global
independent test (GIT) residual errors were interpolated around the in-situ samples5

using VG gridding software in the Ocean Data View (ODV) program (Schlitzer, R.:
Ocean Data View, http://odv.awi.de, 2011). We further separated the model skill into
14 different regions (Table 6; for map of these regions see Supplement J). Although the
Arctic Ocean, Bay of Bengal and Sea of Okhotsk are regions not well constrained by the
technique, the majority of the ocean maintains a relatively homogenous residual error10

range (Fig. 10 and Table 6). The unconstrained regions are either coastal or marginal
seas with known locally complex biogeochemical regimes, so it is understandable that
a trained global open-ocean technique will poorly constrain these local regions.

Through the identification and removal of coastal anomalies (see Supplement K for
details) and unconstrained regions (Arctic Ocean and Bay of Bengal), the final estimate15

for the global open-ocean accuracy for CT and AT is 10.9 and 9.2 µmol kg−1, respec-
tively.

To investigate skewness, we plot the SOMLO global independent test predictions
versus the in-situ measurements (Fig. 11a, c). For CT, skewness is limited (R2 = 0.98),
giving us confidence in the models ability to accurately capture the concentrations of20

CT and AT for any given set of temperature, salinity, dissolved oxygen, (silicate for AT),
and phosphate measurements in the open ocean mixed-layer.

Finally, we found no strong seasonal bias in our SOMLO predictions (Fig. 12).
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7 Application to the Bermuda Atlantic and Hawaiian Ocean time-series sites

The SOMLO technique was trained on a global CT and AT dataset that consisted mostly
of sporadic one-time cruises in time. To test how well seasonal to inter-annual variability
is captured using our technique, we use carbon time-series data from the BATS and
HOT stations as a test-bed.5

7.1 Predicting the North Atlantic seasonal cycle for inorganic carbon (BATS)

Located in the Sargasso Sea, the BATS hydrographic site is a high frequency measure-
ment program of carbon and auxiliary parameters that has been ongoing since 1989.
To test the global SOMLO model in reconstructing the BATS seasonal cycle, we firstly
re-trained the global algorithm without using the BATS 1989–2007 carbon time-series10

dataset. We then use the measured monthly hydrographic properties between 1987–
2007 to independently predict CT and AT concentrations at the BATS site and finally
compare our predicted carbon values to the in-situ measurements to investigate the
skill of the technique. We also independently predict CT/AT values with the traditional
MLR approach as a further test.15

Figure 13a–b shows the measured versus predicted CT and AT annual cycles at
BATS. Within the uncertainty of the SOMLO prediction, both the magnitude and struc-
ture of the seasonal CT cycle at BATS is well constrained, capturing 90 % of the signal
(Fig. 13a). For a global MLR approach, the seasonal cycle is overestimated significantly
by ∼50 %. For AT, the small seasonality is captured by both techniques (Fig. 13b).20

To gain better insight into how the SOMLO substantially improves the prediction of
the BATS seasonal cycle from the traditional MLR analysis, we investigate the neuron
distribution for CT in the North West Atlantic (Fig. 14). Applying a traditional ad-hoc MLR
analysis requires defining somewhat subjective longitude and latitude boundaries for
the data to be used in the linear regressions. Here, as an illustration we use the spatial25

boundaries of 30◦ N to 70◦ N and 40◦ W to 85◦ W that were also used by Lee et al. (2000)
in their MLR approach. The traditional MLR explicitly uses all carbon data within the
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prescribed region, whilst the SOMLO approach partitions the data into neurons without
any prior geographic constraints. The benefit in this approach is that when we are
applying the SOMLO to a new dataset (in this case BATS) the SOM only uses neurons
(data) most consistent with its “biogeochemical fingerprint”, and therefore reduces the
potential bias that would be introduced from including all data in the regression.5

7.2 How well does SOMLO capture inter-annual signals?

Inter-annual variability of CT at BATS is captured to within the uncertainty of the
SOMLO technique over the 18 yr period (Fig. 15). This illustrates a new potentially
powerful way to diagnose year-to-year carbon variability in the ocean by using the
many more long-term hydrographic time-series that are available in the ocean (McNeil,10

2010). To further test the SOMLO approach in capturing inter-annual variability of CT,
we predict the CT signal at the HOT time-series as reported by (Brix et al., 2004). The
SOMLO prediction captures the smoothed inter-annual trend-line at the HOT site to
within 85 % (Fig. 16).

The BATS and HOT comparisons provide additional confidence that the SOMLO15

approach provides good constraints on both seasonal and inter-annual variability of
CT, so that it could be used on a wider scale to help understand the oceans role in
modulating atmospheric CO2.

8 Comparison to previous techniques

It’s important to emphasise reported error estimates of previous empirical studies to20

those calculated here. RSE values presented by previous empirical studies (see Ta-
ble 1) are calculated from the regressions residual error rather than independent tests
as done here, so direct comparisons between previous studies and our results are
not valid. We use the global independent test (GIT, see Sect. 3) in order to accurately
report the differences between our results and previous traditional MLR results.25
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We conduct two sets of calculations as shown in Table 7. The first set of calcula-
tions (RSE(MLR-old)) involves taking the regressions from a suite of prior work (Bates et
al., 2006; Lee et al., 2000, 2006; McNeil et al., 2007) and applying it to the new larger
dataset within each region. The second set of calculations (RSE(GIT)) involved develop-
ing our own set of regressions using the same geographical and temporal boundaries5

and predictors as the previous authors within the much larger dataset. Using the global
independent test (GIT), the skill of the models were calculated (RSE) and could then
be directly compared to our SOMLO values (see Table 7).

The SOMLO, as shown at BATS/HOT, improves the predictive skill of CT and AT in
most regions by between (10–40 %). Globally for CT, the SOMLO reduces the error by10

28 % beyond the MLR method that was used to conduct the only global analysis (Lee
et al., 2000).

9 Conclusions

Here, we have exploited the global carbon CT/AT mixed-layer bottle database
(∼33 000) to investigate two different empirical approaches that diagnose mixed-layer15

carbon dynamics from standard hydrographic parameters. Using independent data as
a test, the traditional multiple linear regression approach constrains the CT system to
15.6 µmol kg−1 and AT to 10.4 µmol kg−1. We then deploy a new non-linear neural net-
work based approach that improves the predictive skill by 2.7–3 µmol kg−1 for CT, or
∼19 % over the MLR, and 0.7–1.4 µmol kg−1 for AT or ∼10 %. In particular, regions of20

known complexity and importance to carbon cycling like the Southern Ocean, North
Atlantic and equatorial Pacific are where the new non-linear approach excels, reduc-
ing errors by up to 35 % over traditional linear approaches. We further test our neural
network technique and find it to predict both seasonal and inter-annual variability of
carbon at BATS and HOT very well.25

The predictive skill of the neural network approach is shown to be spatially and tem-
porally robust, making the model a powerful tool for diagnosing carbon dynamics in the
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ocean. In reality, the intensity of a sampling regime needed to constrain seasonal to
inter-annual variability for carbon is so great that it will always be difficult to achieve on
a global scale. We demonstrate here, that the use of non-linear empirical techniques
on a global scale could potentially advance our understanding of oceanic carbon vari-
ability, particularly in a future where the amount of autonomous hydrographic data is5

increasing exponentially.

Supplementary material related to this article is available online at:
http://www.biogeosciences-discuss.net/9/15329/2012/
bgd-9-15329-2012-supplement.pdf.
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Table 1. Previous empirical approaches to constrain surface AT and CT distributions.
T=Temperature, S=Salinity, DO=Dissolved Oxygen, AOU=Apparent Oxygen Utilization,
N=Nitrate (NO−

3 ), Si= Silicate (SiO4), P=Phosphate (PO3−
4 ), Chl a=Chlorophyll a,

Lat=Latitude, Long=Longitude.

Study Region Response Predictors Na RSEb (µmol kg−1) Author

Global NAc
T T 1740 5 Millero et al. (1998)

Global AT T, T2, S, S2, Long 5692 8.1 Lee et al. (2006)
Indian Ocean AT T, S, N, AOU, Depth, Lat, P 2363 4.5–6.4d Bates et al. (2006)
Southern Ocean AT S, N, Si 1200 8.1 McNeil et al. (2007)
Arctic Ocean AT T, S 853 26.9, 75 Arrigo et al. (2010)

Global NCc
T T, T2, N ∼4900 7 Lee et al. (2000)

Indian Ocean CT T, S, N, AOU, Depth, Lat, P 2395 4.4–6.0d Bates et al. (2006)
Southern Ocean CT T, S, DO, N, Si 1032 8 McNeil et al. (2007)
Arctic Ocean CT Chl a, T, S 853 33.4, 61.6, 17.3 Arrigo et al. (2010)

a Number of measurements used in the study.
b Residual Standard Error.
c Salinity normalized concentrations of CT and AT

(
× 35

S

)
.

d Range of RSE values presented for the four monsoonal/inter-monsoonal seasons.
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Table 2. Data sources of our global merged dataset.

Source Number of
Measurements

CARINA 12 599
PACIFICA 9690
GLODAP 6674
CLIVARa 1689
AAIWb 755
BATSc 705
HOTd 540
NACPe 291
Miscellaneous 192

Total 33 135

a Climate Variability and Predictability.
b Antarctic Intermediate Cruise.
c Bermuda Atlantic time-series.
d Hawaiian Ocean time-series.
e North Atlantic Carbon Program.
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Table 3. Universal and ad-hoc MLR results for (a) CT and (b) AT.

RSE (µmol kg−1)

Regression Independent test (GIT)

Region Zonea Nb N cruisesc Ad-hoc Universal Ad-hoc Universal

(a)

Sub-trop 1 5388 109 11.9 17.1 15.2 17.3
Eq Pac 2 752 14 11.3 16.8 18.9 17.7
North Atl 3 4626 69 13.2 15.5 15.5 16.2
North Pac 4 2344 112 17.7 17.2 16.8 17.5
SO 5 7856 75 12.5 12.4 16.4 12.8

Global 20 966 289 13.2 15.1 16.0 15.6

(b)

Sub-trop 1 4917 94 10.2 10.2 11.0 10.4
Eq Pac 2 513 7 6.9 12.4 9.4 13.0
North Atl 3 3181 53 7.7 10.0 7.9 10.1
North Pac 4 1956 88 14.3 16.4 14.8 16.6
SO 5 6084 58 8.0 9.1 9.4 9.8

Global 16 651 224 9.5 10.8 10.4 11.1

a Corresponding geographical region in Fig. 2.
b Number of measurements in the corresponding region.
c Number of unique cruises/time series in the region.
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Table 4. Summary of the three independent datasets used to constrain the general configura-
tion of the SOMLO model.

Independent Number of Percentage of
dataset samples global dataset

T1 3769 11.4
T2 2919 8.8
T3 3391 10.2

Total 10 079 30.4
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Table 5. Skill comparison between the traditional MLR and SOMLO approaches for (a) CT and
(b) AT.

RSE (µmol kg−1)

Region Zonea Ad-hoc MLR SOMLO % Improvement

(a)

Sub-trop 1 15.2 13.5 11.2
Eq Pac 2 18.9 13.3 29.7
North Atl 3 15.5 11.7 24.5
North Pac 4 16.8 14.3 14.9
SO 5 16.4 12.7 22.6

Global 16.0 (15.6)b 12.9 19.4 (17.4)b

(b)

Sub-trop 1 11.0 9.2 16.4
Eq Pac 2 9.4 9.6 0
North Atl 3 8.0 8.5 0
North Pac 4 14.8 14.4 2.7
SO 5 9.4 8.8 6.4

Global 10.4 (11.1)b 9.7 6.7 (12.6)b

a Corresponding geographical region in Fig. 2.
b Universal MLR.
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Table 6. Regional and global SOMLO skill evaluation.

Region Zonea RSEb CT RSEb AT Nc CT Nc AT

Arctic Ocean 1 26.6 22.1 782 795

Sup-Polar North Atlantic 2 11.6 9.0 4425 2641
Sub-Tropical North Atlantic 3 9.1 6.6 1481 1254
Equatorial Atlantic 4 13.7 13.0 654 582
Sub-Tropical South Atlantic 5 10.6 8.7 659 551

Sub-Polar North Pacific 6 11.2 14.7 2053 1615
Sub-Tropical North Pacific 7 11.1 8.2 2367 1446
Equatorial Pacific 8 11.2 8.3 1524 802
Sub-Tropical South Pacific 9 12.3 7.7 1824 1404

Sub-Tropical North Indian (Exc. Bay of Bengal) 10 22.1 (13.9) 13.4 (7.5) 143 (111) 168 (136)
Equatorial Indian 11 11.8 7.7 512 500
Sub-Tropical South Indian 12 11.5 5.6 1411 1388

Southern Ocean 13 8.7 8.8 3950 3088
Subantarctic waters 14 9.5 8.5 2250 1474

Global 11.8 10.2 24 035 17 708

Global (below 70◦ N) 10.9 9.2 23 253 16 913

a Corresponding geographical region in Fig. J1.
b Residual Standard Error (µmol kg−1).
c Number of measurements in the region.
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Table 7. Comparison to previous empirical approaches.

RSE (µmol kg−1)

Study Response Nd RSE(MLR-old) RSE(GIT) SOMLO(GIT) % Author
Variable improvement

Globala CT 13 881 22.0 17.8 12.8 28 Lee et al. (2000)
Indianb CT 2052 15.2 21.4 13.0 39 Bates et al. (2006)
Southern Ocean CT 4196 17.3 8.8 9.0 0 McNeil et al. (2007)

Global AT 10 360 (8995) 11.7 (10.3) 10.9 (10.4) 10.7 (9.9) 2 Lee et al. (2006)
(exc. North Pacific)c

Indianb AT 2042 9.4 11.8 7.1 40 Bates et al. (2006)
Southern Ocean AT 4196 10.3 10.3 9.3 10 McNeil et al. (2007)

a Using only surface data (above 30 m).
b Only measurements from within our defined mixed-layer were used to constrain
new regressions and test previous regressions.
c The North Pacific empirical regression of Lee et al. (2006) included an interaction term
between temperature and longitude. Here, longitude values were taken to range from 0–360◦.
d Number of measurements.
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Fig. 1. (a) Global distribution of the training dataset, (b) seasonal and (c) yearly histograms
of the training dataset separated into Southern (light shade) and Northern (dark shade)
Hemisphere. Southern Hemisphere seasons are defined as Summer (December–February),
Autumn (March–May), Winter (June–August) and Spring (September–November), Northern
Hemisphere seasons are opposite.
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Fig. 2. Spatio-temporal division of the global training dataset for the ad-hoc MLR approach.
Black boundaries are common for both CT and AT models, whilst red boundaries are for CT
only and blue for AT only. A red asterix indicates that MLR’s were developed for both Summer
(November–April for Austral hemisphere) and winter (May–October for Austral hemisphere)
periods to constrain CT. Boreal Summer/Winter seasons are opposite.
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Fig. 3. Schematic diagram of neural network training and prediction phases.
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Fig. 4. T1 independent dataset distribution.
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Fig. 5. RSE results for the SOMLO when applied to the three independent datasets. Numbers
under the dotted line represents the optimal number of neurons to constrain the system.
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Fig. 6. Optimal RSE values for (a) CT and (b) AT SOMLO models. Numbers above the line
represent the optimal number of neurons.

15370

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/15329/2012/bgd-9-15329-2012-print.pdf
http://www.biogeosciences-discuss.net/9/15329/2012/bgd-9-15329-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 15329–15380, 2012

Diagnosing seasonal
to inter-annual

surface ocean carbon
dynamics

T. P. Sasse et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 7. Skill of optimal SOMLO models with geographical constraints. Numbers below dashed
line represent the optimal number of neurons.
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Fig. 8. Distribution of assigned neurons for SOM models trained with (a) biogeochemical infor-
mation only and (b) biogeochemical and geographical information.
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Fig. 9. Skill comparison between the SOMLO and SOMM models in capturing CT.
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Fig. 10. Distribution of global independent test (GIT) absolute residual errors for (a) CT and (b)
AT.
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Fig. 11. Global independent test (GIT) predictions versus in-situ measurements and residual
error density distribution for optimal (a–b) CT and (c–d) AT SOMLO configurations. r2 = r-
squared correlation and N =number of samples.
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Fig. 12. SOMLO CT/AT seasonal independent test RSE values. For austral hemisphere sea-
sons are defined as Summer (December–February), Autumn (March–May), Winter (June–
August) and Spring (September–November). Boreal hemisphere seasons differ by 6 months.
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Fig. 13. BATS in-situ and independently predicted seasonal cycles for (a) CT and (b) AT. Blue
shaded region illustrates the uncertainty in SOMLO predictions.
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Fig. 14. Distribution of assigned neurons in the Northwest Atlantic region for optimal CT SOMLO
model.
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Fig. 15. In-situ and independently predicted BATS CT measurements partitioned into years with
loess line.

15379

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/15329/2012/bgd-9-15329-2012-print.pdf
http://www.biogeosciences-discuss.net/9/15329/2012/bgd-9-15329-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 15329–15380, 2012

Diagnosing seasonal
to inter-annual

surface ocean carbon
dynamics

T. P. Sasse et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 16. In-situ and independently predicted HOT CT measurements with loess line.
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